HDAC6 Brain Mapping with [18F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination
نویسندگان
چکیده
Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulates tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [18F]Bavarostat. Finally, by using [18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.
منابع مشابه
18F-Deoxyfluorination of Phenols via Ru π-Complexes
The deficiency of robust and practical methods for 18F-radiofluorination is a bottleneck for positron emission tomography (PET) tracer development. Here, we report the first transition-metal-assisted 18F-deoxyfluorination of phenols. The transformation benefits from readily available phenols as starting materials, tolerance of moisture and ambient atmosphere, large substrate scope, and translat...
متن کاملP80: The Effects of Progesterone Receptors\' Antagonist RU-486 on BrainEdema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury
In previous studies, the neuroprotective effect of progestrone in diffuse traumatic brain injury has been shown. This study used mifepristone (RU-486), a potent progesterone receptor antagonist, to evaluatethe hypothesis that the neuroprotective effect of progesterone in traumatic brain injury is mediated by the progesterone receptors. The ovariectomized rats were divided into 6 groups. Brain i...
متن کاملMicrotubule-associated histone deacetylase 6 supports the calcium store sensor STIM1 in mediating malignant cell behaviors.
Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) storage sensor that promotes cell growth, migration, and angiogenesis in breast and cervical cancers. Here, we report that the microtubule-associated histone deacetylase 6 (HDAC6) differentially regulates activation of STIM1-mediated store-operated Ca(2+) entry (SOCE) between cervical cancer cells and normal cervical epit...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملLoss of Deacetylation Activity of Hdac6 Affects Emotional Behavior in Mice
Acetylation is mediated by acetyltransferases and deacetylases, and occurs not only on histones but also on diverse proteins. Although histone acetylation in chromatin structure and transcription has been well studied, the biological roles of non-histone acetylation remain elusive. Histone deacetylase 6 (Hdac6), a member of the histone deacetylase (HDAC) family, is a unique deacetylase that loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017